Name:
Date:
ENFD 116 - Section:

Test 1

1. Circles. For the following equation, what is the radius and center of the circle? (calculations are not required)

$$(x-3)^2 + (y+2)^2 = 25$$

2. Domain. Determine the domain for each of the following functions (answer in interval notation):

a)
$$f(x) = \sqrt{x^2 - 5x + 6}$$

b)
$$3 > \frac{x+4}{x+5}$$

3. Range. Determine the range for the following function (calculations are not required):

$$f(x) = \sqrt{x^2 - 5x + 6}$$

4. Graphing. Graph the following function:

$$y = 2 - \frac{2}{3}x$$

5. Linear Functions. Consider the two points (3,4) and (-5,-4)

- a) What is the slope of the line that connects these two points?
- b) What is the equation of the line that goes through these two points?
- c) What is the distance between these two points?
- **6. Quadratic Functions.** A small automotive pilot plant is analyzing its production rates, and finds that they should make a profit, F(x), in thousands of dollars, for selling x cars per month, where:

$$F(x) = -x^2 + 6x - 4$$

- a) How many cars should they produce to make the maximum profit?
- b) What is the maximum profit?
- c) Graph the P(x):

7. Word problem. I have found that the best shape (considering handling and tipping properties) for a cylindrical beer can has a height, h, that is 1.5 (or 3/2) times the radius, r, of the can (units in inches).

Helpful relations: Voytmaer - mr2h

- a) Determine the volume of this can in terms of the radius of the can.
- b) When designing this can, we didn't want the beer to be sitting out for a long time without anyone drinking it, and getting warm, so we decided to limit the volume to a maximum of 12π in $V < 12\pi$.
 - a. For this design, what is the domain (answer in interval notation)?
 - b. What is the range for the volume?